Stretching DNA to quantify nonspecific protein binding
نویسندگان
چکیده
منابع مشابه
Nonspecific protein-DNA binding is widespread in the yeast genome.
Recent genome-wide measurements of binding preferences of ~200 transcription regulators in the vicinity of transcription start sites in yeast, have provided a unique insight into the cis-regulatory code of a eukaryotic genome. Here, we show that nonspecific transcription factor (TF)-DNA binding significantly influences binding preferences of the majority of transcription regulators in promoter ...
متن کاملSpecific versus nonspecific binding of cationic PNAs to duplex DNA.
Although peptide nucleic acids (PNAs) are neutral by themselves, they are usually appended with positively charged lysine residues to increase their solubility and binding affinity for nucleic acid targets. Thus obtained cationic PNAs very effectively interact with the designated duplex DNA targets in a sequence-specific manner forming strand-invasion complexes. We report on the study of the no...
متن کاملProtection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps.
Reactive oxygen species can damage most cellular components, but DNA appears to be the most sensitive target of these agents. Here we present the first evidence of DNA protection against the toxic and mutagenic effects of oxidative damage in metabolically active cells: direct protection of DNA by Dps, an inducible nonspecific DNA-binding protein from Escherichia coli. We demonstrate that in a r...
متن کاملDNA sequence correlations shape nonspecific transcription factor-DNA binding affinity.
Transcription factors (TFs) are regulatory proteins that bind DNA in promoter regions of the genome and either promote or repress gene expression. Here, we predict analytically that enhanced homooligonucleotide sequence correlations, such as poly(dA:dT) and poly(dC:dG) tracts, statistically enhance nonspecific TF-DNA binding affinity. This prediction is generic and qualitatively independent of ...
متن کاملFrom Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions
DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA ta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2012
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.86.011905